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1
SEGMENTING BUS TOPOLOGY

FIELD OF THE INVENTION

The present invention relates to systems and methods for
segmenting bus topology and more particularly to segment-
ing a bus to increase addressable devices attached to the bus.

BACKGROUND

Computer bus architectures can only support a limited
number of attached nodes. For example, [2C (Inter-Integrated
Circuit) buses use a 7-bit address space with 16 reserved
addresses. These buses provide a maximum of 112 nodes that
communicate on a same bus.

The use of 12C for system devices is reaching a stage where
addressing concerns will limit the number of devices on the
same bus. Such limitations will cause significant problems for
systems requiring a large number of addressable devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary bus topology 100 using various
switching techniques for a segmented bus in accordance with
an exemplary embodiment.

FIG. 2A shows an exemplary bus topology to address up to
128 devices in accordance with an exemplary embodiment.

FIG. 2B shows an exemplary switching table that indicates
the step(s) to take to address a desired bus segment in accor-
dance with an exemplary embodiment.

FIG. 3A shows a first part of a data structure for the bus
topology of FIG. 2A in accordance with an exemplary
embodiment.

FIG. 3B shows a second part of a data structure for the bus
topology of FIG. 2A in accordance with an exemplary
embodiment.

FIG. 3C shows a third part of a data structure for the bus
topology of FIG. 2A in accordance with an exemplary
embodiment.

FIG. 4A shows an exemplary multiplexed bus topology in
accordance with an exemplary embodiment.

FIG. 4B shows a corresponding data structure for FIG. 4A
in accordance with an exemplary embodiment.

FIG. 5A shows an exemplary multiplexed bus topology in
accordance with an exemplary embodiment.

FIG. 5B shows a corresponding data structure for FIG. 5A
in accordance with an exemplary embodiment.

FIG. 6 A shows an exemplary multiplexed bus topology in
accordance with an exemplary embodiment.

FIG. 6B shows a corresponding data structure for FIG. 6A
in accordance with an exemplary embodiment.

FIG. 7 shows a flow diagram of an algorithm used to select
and switch to a destination segment described by a data struc-
ture in accordance with an exemplary embodiment.

DETAILED DESCRIPTION

Exemplary embodiments in accordance with the invention
relate to systems and methods for segmenting bus topology to
increase addressable devices that can attach to the bus.

One exemplary embodiment uses a segmented 12C archi-
tecture where multiple segments are linked together at the
same time, but all segments are not simultaneously acces-
sible. Platform hardware uses switches (such as multiplexers)
to switch between different bus segments. Furthermore, the
method to organize, switch, and manage the bus topology,
including variable complexities of topology, is used by
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embedded processors or controllers, such as Integrated
Lights-Out (iL.O) for access to I12C devices in the system.

Exemplary embodiments provide a method and system to
organize and optimize multiple segmented buses. For
example, exemplary methods and apparatus include one or
more of the following: assigning an enumerated segment
number to each segment in the system that is used to locate a
target device; assigning devices to the segments; using primi-
tives as descriptions of zero or more switching operations
needed to switch to a segment that describes the nature of the
switching (which can include, but is not limited to, use of
general-purpose control bits (GPO bits), inline 12C multi-
plexers, 12C expander control bits, and CPLD controls); using
potential optimizations that determine if switching opera-
tions can be avoided in order to address a segment; and using
optimization work-arounds wherein different segment aliases
are used to prevent optimizations.

One exemplary embodiment uses a data structure to repre-
sent the segmented implementation of the system. The
embodiment includes methods (primitives) that switch
between the segments and describe the hierarchy/topology of
the implementation and multiplexer ordering rules. For each
system segment, the data structure lists primitives needed to
switch to that segment. Multiple primitives are used in com-
plex topologies, and the order that the primitive dependencies
(other primitives) are processed is required for proper opera-
tion. Other data structures such as Sensor Data Records that
describe target devices use a consistent segment number, so
that the switching primitives are processed before communi-
cating to the device. The data structures are used by system
software and management processors (such as iLO) to switch
between segments in order to communicate with devices on
the segment. Optimizations allow the processors to reduce or
eliminate unnecessary switching operations when a target
device is already on an addressable segment and to reduce
unnecessary switching operations when targeting a new seg-
ment that shares a full or partial route. Optimizations can be
avoided, forcing primitives processing, by putting devices on
different logical segments that share similar switching primi-
tives: because the logical segments are different, optimiza-
tions would be avoided.

Primitives associated with a given segment describe the
steps needed to switch to that segment. These steps can
include the use of general-purpose 1/O bits, inline 12C multi-
plexers, system CPLD/PAL glue logic, and other extensions
needed as systems are designed. The primitives describe the
address, byte offset, bit mask, bitwise operation, and positive
or negative logic used to perform the switch. Primitives can
indicate that the segment is a “root” segment directly con-
nected to the controller. Primitives can also indicate that the
segment is an alternate to 12C, such as PECI (Platform Envi-
ronment Control Interface), which has similar addressing and
protocol concerns, but a different hardware transport.

As discussed in more detail below, exemplary embodi-
ments provide a segmented topology, so that software that
uses the topology does not need to be constructed with prior
knowledge. In one embodiment, the data structure is carried
or stored by the host platform so that system software, firm-
ware, and processor do not need to carry the data. Optimiza-
tions are made to reduce unnecessary switching. The optimi-
zations are based on data in the data structure. The
optimizations can be avoided by constructing the data struc-
ture so that optimizations are not evident. Furthermore, flex-
ibility between data size and code size trade-offs is provided.
The primitives in the data structure provide for multiple dif-
ferent switching paths or alternatives along the bus. The
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primitives can describe segments such as 12C or PECIused by
the controller for communication.

FIG. 1 shows an exemplary bus topology 100 using various
switching techniques for a segmented bus in accordance with
an exemplary embodiment.

By way of example, the bus topology uses a segmented [12C
bus 110 with multiple segments, levels, multiplexers
(muxes), and selection mechanisms. For illustration, a con-
troller PALL CPLD 120 connects through an expansion bus

5

125 to a processor or controller 130 (such as iLO). The con- 10

troller 130 couples via a first bus segment 135 to an 12C GPO
140 and multiplexer 145, and couples via a second bus seg-
ment 150 to multiplexer 155. The multiplexer 145 in turn
couples to a first device 160A, second device 160B, and
another multiplexer 165 via another bus segment 170 to two
devices 160C and 160D. The multiplexer 155 couples to two
devices 160E and 160F.

12C segments (such as 135, 150, 170) are enumerated at
each node by first enumerating the segments starting from the
controller 130, and then descending the lowest numbered
segment. Each segment has a unique segment number for
addressing purposes. For example, segment 170 has a seg-
ment number of 5. This number is an exemplary convention
and not a requirement for enumeration. In one exemplary
embodiment, bus segments directly connected to the control-
ler 130 are assumed to correspond with the controller instance
number (engine/bus number). In one embodiment, all seg-
ments are uniquely numbered.

Exemplary embodiments support a wide variety of mecha-
nisms to switch a multiplexer. In general, the term “upstream”
refers to segments closer to controller 130, and the term
“downstream” refers to segments farther away (higher num-
bered) from the controller. Furthermore, the term “inline”
implies that the mux is addressable at the same time as the
desired segment.

By way of example, device 140 is shown as an 12C GPO
expander (shown from bus 0 of processor 130 to segment 4,
5). An 12C device can addressable and support multiple gen-
eral-purpose-output pins that can be routed to a mux that is
switched using external discrete logic.

As another example, 12C inline multiplexer is shown from
bus 5 to segment 6, 7. The 12C mux can be an [2C addressable
device enabling switching between downstream segments. In
one exemplary embodiment, the mux itself requires an 12C
device address. It is implicit that the mux is addressable in
order to select downstream segments. In an implementation
with cascading muxes, the upstream inline mux is selected
prior to the downstream mux.

As another example, General-Purpose Output bits are
shown from bus 3 to segment 8, 9. Here, a mux can be selected
using general-purpose-output pins. The pins are sourced from
the controller PALL CPLD 120 or also from GPO bits and
scan-chain.

Exemplary embodiments use a switching primitive to
select a connection on a mux. Primitives can have dependen-
cies that process before the operation described by the primi-
tive. The target I12C segment associated with the primitive is
addressable on a controller bus after the necessary switching
primitives are completed. Some segments can require pro-
cessing multiple primitives to complete needed switching.

A primitive contains basic data used by controller to select
the segment and includes:

(1) Type that indicates the control being used such as 12C,

CPLD, scan chain, GPO.

(2) Address that locates the data being changed.

(3) Offset (in bytes) to the data at the address.

(4) Mask that identifies the bit(s) being changed.
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(5) Operation that indicates whether bitwise AND or OR is

used.

(6) Sign that indicates if positive (bit set) or negative (bit

clear) logic is used.

FIG. 2A shows an exemplary bus topology 200 to address
up to 128 devices, such as 128 DIM Ms (dual in-line memory
module). The exemplary layout is dictated by chipset and
memory reference code constraints (MRC—part of the sys-
tem ROM). Different MUX implementations and depths
could be used, resulting in different segmenting.

The bus topology 200 includes a controller 210 that
couples through an expansion bus 215 to a CPLD 220 and a
plurality of multiplexers (shown as 230A-230K). The topol-
ogy also includes eight central processing units (CPUs,
shown as 240A-240H) and 128 devices (some being shown as
250).

FIG. 2B shows an exemplary switching table that indicates
the step(s) to take to address a desired bus segment. Each
segment is selected using the primitives listed. For a given
segment, additional dependencies (to address upstream seg-
ments) may be listed, until no more remain.

For example, to address a DIMM on segment 40 the fol-
lowing is shown:

40
30| mux10[A] _l
implying that 30 is a dependency as follows:
30
7 mux7 [C] _l
implying that 7 is a dependency as follows:
7
3) muxl1 [B] _l
implying that 3 is a dependency as follows:
3

implying no more dependencies and that bus (3) is used for
the transaction.
To process, the following steps would apply in this order:
1. Bus (3) will be used
2. Switch mux 230A to channel B (address segment 3, 7)
3. Switch mux 230G to channel C (address segment 3, 7,
30)
4. Switch mux 230J to channel A (address segment 3, 7, 30,
40)
5. Conduct transaction to any nodes on segment 40.
Discussion now addresses linked primitive order. When
processing linked primitives, the list of switching primitives
is built by traversing back (upstream) from the target segment,
and then performing the switching in a forward (downstream)
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order. This may not be necessary depending on the type of
muxes used, but this method will work regardless of the type
of'muxes used. Inline muxes require switching in downstream
order, from the controller to the target segment.

Regarding resource usage of linked primitives, assuming
that a dependency is represented as 1 byte and a switching
primitive is 4 bytes, for a 48 segment implementation the
memory requirements are as follows:

(segments)*(dependency bytes+primitive bytes)=table
bytes 48%(1+4)=240 bytes.

As shown, 240 bytes are used to maintain a switching table
for a 48-segment topology.

In the linked primitive implementation shown in FIG. 2A,
the data is fairly simple, but the software implementation
might be more complicated. In order to simplify the software,
another approach with more data could be used, shown in the
exemplary switching tables of FIGS. 3A-3C.

FIGS. 3A-3C use the same bus topology shown in FIG. 2A.
The different switching tables are used to eliminate a need to
follow links between primitives. Instead, 0 or more primitives
are used to switch to a given segment, and additionally, the
controller I2C master is included in the list of primitives.

These tables represent the existences of an expanded primi-
tive order. Specifically, expanded primitives are recorded in
the order that they are processed. This simplifies the software
implementation when compared to the exemplary embodi-
ment of tables of FIG. 2B, and requires that the data structure
is correctly organized, representing a trade-off in code versus
data complexity.

For the embodiment using tables of FIGS. 3A-3C, all
muxes can be switched using peripheral (CPLD) logic con-
trols as opposed to inline multiplexers. This means that the
intermediate segments do not require explicit enumeration
because they are always switchable. Likewise, primitives do
not need to be processed in order.

With exemplary embodiments, resource usage of expanded
primitives depends on the depth of layers. In other words,
assuming that a switching primitive is 4 bytes, the storage
requirements for expanded primitives depends on the number
of layers deep. The data structure of the switching table is
simplest if each record is a fixed size, based on the number of
switching levels. For the 48 segment implementation shown,
with 3 levels of muxes, the memory requirements are as
follows:

(segments)*(levels)*(dependency bytes)=table bytes
48*3%4=576 bytes.

As shown, 576 bytes are used to maintain a switching table
for a 48-segment topology. This is 2.4 times larger than the
240 bytes with the linked primitives table for the same topol-
ogy.

With exemplary embodiments, several optimizations can
be used to reduce overhead when switching a complex topol-
ogy. Target device optimization is one example. Here, a trans-
action to a device on a segment along the path to the current
segment does not require a procedure to switch to the current
segment. This case may be unlikely in that most devices will
probably be located on the downstream “leaves” and not
along the upstream path.

Target device optimization by traversing the switching
table is another example. Here, the determination of when
such an optimization is used can occur by traversing the
switching table and determining if the target resides on the
path to a segment that is already switched.

Target device optimization by maintaining a switching
cache is yet another example. Here, an alternative optimiza-
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6

tion is to maintain a cache of each switching level. In this
example, there are three switching levels (nested muxes), so if
the target segment is maintained in the cache at a given level
as well as all upstream levels, no switching needs to occur.

Target mux optimization is yet another example. Here,
when switching to a new segment, it is unnecessary to switch
upstream muxes that already have the correct selection. This
determination can be made by traversing the switching table
or by referencing the switching cache.

FIG. 4A shows an exemplary multiplexed bus topology
400, and FIG. 4B shows the corresponding data structure.

In the example, a management processor 410 couples to a
mux 420 and supports eight bus segments. Four root segments
are direct, and four segments are connected using a multi-
plexer (mux) on segment 0.

The data structure in FIG. 4B describes the segments in the
system. Root segments directly connected to the processor
410 are identified using an indicator such as “parent segment
OxFF” in the data structure. Bus transactions are normally
initiated at the processor.

For example, to transact to a device on segment 6,

1) software requests segment 6 transaction to device

2) algorithm is used:

a. identify root as engine 0
b. switch MUX to segment 6 using primitive
c. store “history” as segment 6

3) transaction is performed on root engine 0.

To transact to a device on segment 2

4) software requests segment 2 transaction to device

5) algorithm is used:

a. segment 2 is a root engine

6) transaction is performed on root engine 2.

To transact to a device on segment 6,

7) software requests segment 6 transaction to device

8) algorithm is used:

a. identify root as engine 0
b. history: mux is already on segment 6

9) transaction is performed on root engine 0.

To transact to a device on segment 7,

10) software requests segment 7 transaction to device

11) algorithm is used:

a. identify root as engine 0

b. history: not segment 7

c. switch MUX to segment 7
d. store “history” as segment 6

12) transaction is performed on engine 0.

For leaf segments, the data describes the path to the pro-
cessor and the associated primitive.

FIG. 5A shows an exemplary multiplexed bus topology
500 with four devices 510A-510D coupled together, and FIG.
5B shows the corresponding data structure.

FIG. 6A shows an exemplary multiplexed bus topology
600 with three devices 610A-610C coupled together, and
FIG. 6B shows the corresponding data structure.

If the system provides data structured to describe the
switched bus topology, software can use the data to select the
muxes and reach the desired segment.

One type of mux entails a special requirement. An in line
mux is a device that is addressed on the bus topology and used
to select “downstream” segments. Therefore cascading inline
muxes must be switched in order starting closest to the BMC
and iteratively until the destination segment.

FIG. 7 shows a flow diagram of an algorithm used to select
and switch to a destination segment described by a data struc-
ture.

The destination segment (700) is provided and flow com-
mences (705) wherein a determination is made as to whether
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the destination is the root (710). If yes, then flow is complete
(715). If no, then initialization occurs (720) and a determina-
tion is made as to whether the destination is current (725). If
yes, then stats[engine].current equals current (730). If no,
then the path is table[destination] (735). Then if escape ++ is
less than 10 (740), determine if the path is valid (750). Oth-
erwise, an error results (745). If the path is valid, then path-
.parent is root (755) is determined. If yes, then engine is equal
to path.parent (760) and a determination is then made as to
whether stats| engine].current equals destination (770). Ifyes,
flow is complete (715). If path.parent is not equal to root (755)
then a determination is made whether path.parent is current
(765). If no, then path equals table[path.parent] (775), and if
yes then select the mux[path] and current equals path.seg-
ment (780).

DEFINITIONS

As used herein and in the claims, the following words are
defined as follows:

The term “address space” means a range of discrete
addresses that correspond to a physical or virtual memory
register, network host, peripheral device, or other logical or
physical entity.

The term “CPLD” or “complex programmable logic
device” means an electronic component that is used to build
reconfigurable digital circuits and that includes a macro cell
containing logic implementing disjunctive normal form
expression and other specialized logic operations.

The terms “I2C” or “Inter-Integrated Circuit” means a
multi-master serial computer bus that attaches low-speed
peripheral devices to a printed circuit board (such as a mother
board), embedded system or cellular device. 12C uses two
bidirectional open-drain lines, Serial Data (SDA) and Serial
Clock (SCL). The system uses a 7-bit address space with 16
reserved addresses to provide a maximum of 112 nodes that
communicate on a same bus. The bus has two nodes: a master
node which issues clock and address, and the slave node
which receives the clock line and address. For example, a
master node transmits to a slave node a start bit followed by a
7-bit address of the slave node followed by a single bit to
represent write (0) or read (1). The slave node responds with
an ACK bit (acknowledge) for that address.

The terms “Integrated Lights Out” (ILO) or “Lights Out
Management” (LMO) mean an embedded server manage-
ment technology that enables a remote electronic device or
computer to perform activities on a server from a location
remote to the server. For example, an iL O card has a separate
network connection and its own IP (Internet Protocol) address
to which a user can connect through HTTP (Hyper Text
Markup Language) over the Internet. The remote electronic
device can perform actions such as reset the server, power-up
the server, take over the screen of the server, mount remove
physical CD/DVD drives or images, access the server’s IML,
(Integrated Management [og), and provide a remote console
for the server. Further, iLO and LOM can be used as an
out-of-band management technology.

The term “multiplexer” or “mux” means a switch having
multiple-inputs and a single-output. A multiplexer is also a
device that performs multiplexing.

The word “multiplexing” means a process where multiple
analog message signals or digital data streams are combined
into one signal over a shared medium. Multiplexed signals are
transmitted over a communication channel, such as a physical
transmission medium (for example, a bus). Multiplexing
divides a low-level communication channel into several
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8

higher-level logical channels with one channel for each mes-
sage signal or data stream being transferred.

The term “PAL” or “Programmable Array Logic” is a pro-
grammable logic device that implements logic functions in
digital circuits and includes a PROM (programmable read-
only memory) core and output logic to implement logical
functions.

The word “primitive” means a process used by software to
enact a multiplexer. The primitive describes the nature of
selecting a segment, and what steps are needed to perform the
selection. For example a general-purpose output could be
used to drive the mux select signals. The associated primitive
describes the nature of the control (GPO), the control bits that
are cleared (clear) and then set (set) to drive the select signals
to the mux.

Exemplary embodiments are not limited to any particular
type of bus. For example, exemplary embodiments can be
implemented on 12C bus, a System Management Bus (SMB)
bus, etc.

In one exemplary embodiment, one or more blocks or steps
discussed herein are automated. In other words, apparatus,
systems, and methods occur automatically. The terms “auto-
mated” or “automatically” (and like variations thereof) mean
controlled operation of an apparatus, system, and/or process
using computers and/or mechanical/electrical devices with-
out the necessity of human intervention, observation, effort
and/or decision.

The methods in accordance with exemplary embodiments
of'the present invention are provided as examples and should
not be construed to limit other embodiments within the scope
of the invention. Further, methods or steps discussed within
different figures can be added to or exchanged with methods
of steps in other figures. Further yet, specific numerical data
values (such as specific quantities, numbers, categories, etc.)
or other specific information should be interpreted as illus-
trative for discussing exemplary embodiments. Such specific
information is not provided to limit the invention.

Inthe various embodiments in accordance with the present
invention, embodiments are implemented as a method, sys-
tem, and/or apparatus. As one example, exemplary embodi-
ments and steps associated therewith are implemented as one
or more computer software programs to implement the meth-
ods described herein. The software is implemented as one or
more modules (also referred to as code subroutines, or
“objects” in object-oriented programming). The location of
the software will differ for the various alternative embodi-
ments. The software programming code, for example, is
accessed by a processor or processors of the computer or
server from long-term storage media of some type, such as a
CD-ROM drive or hard drive. The software programming
code is embodied or stored on any of a variety of known
media for use with a data processing system or in any memory
device such as semiconductor, magnetic and optical devices,
including a disk, hard drive, CD-ROM, ROM, etc. The code is
distributed on such media, or is distributed to users from the
memory or storage of one computer system over a network of
some type to other computer systems for use by users of such
other systems. Alternatively, the programming code is
embodied in the memory and accessed by the processor using
the bus. The techniques and methods for embodying software
programming code in memory, on physical media, and/or
distributing software code via networks are well known and
will not be further discussed herein.

The above discussion is meant to be illustrative of the
principles and various embodiments of the present invention.
Numerous variations and modifications will become apparent
to those skilled in the art once the above disclosure is fully
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appreciated. It is intended that the following claims be inter-
preted to embrace all such variations and modifications.
What is claimed is:
1. A method, comprising:
segmenting a bus topology into multiple bus segments
linked together to increase addressable devices that can
attach to a bus, the multiple bus segments comprising
switches comprising a first switch having an input and a
plurality of first outputs, a first one of the plurality of first
outputs directly connected to an input of a second switch
having a plurality of second outputs and an addressable
device directly connected to a second one of the plurality
of first outputs;
selectively connecting the input of the first switch to the
input ofthe second switch or the addressable device; and

using optimizations to determine when switching opera-
tions can be avoided in order to address a segment on the
bus, the optimizations selected from a group of optimi-
zations consisting of: (1) eliminating unnecessary
switching operations upon determining that a target
deviceis already on an addressable segment of one of the
buses; (2) eliminating unnecessary switching operations
upon determining that a target device resides on a path to
a segment that is already switched; and (3) eliminating
unnecessary switching operations upon determining
that an upstream multiplexer already has a correct selec-
tion.

2. The method of claim 1 further comprising: using primi-
tives as descriptions of switching operations to control the
first switch and the second switch on the bus to perform the
switching operations.

3. The method of claim 1 further comprising, assigning
hardware devices attached to the bus to the different seg-
ments.

4. The method of claim 1 further comprising, assigning an
enumerated segment number to each of the different seg-
ments for locating a target device connected to the bus.

5. A tangible computer readable storage medium having
instructions for causing a computer to execute a method,
comprising:

enacting switches on buses to perform switching opera-

tions described in linked primitives, the switching
operations switching between different segments on the
buses that are divided into the different segments to
increase addressable devices that can attach to the buses,
wherein the switches comprise:

afirst switch having an input and a plurality of first outputs;

a second switch having an input and a plurality of second

outputs, the input of the second switch being directly
connected to a first one of the plurality of first outputs;
and
an addressable device connected to a second one of the
plurality of first outputs, wherein the first switch selec-
tively connects the input of the first switch to the input of
the second switch or the addressable device; and

eliminating unnecessary switching operations when a tar-
getdevice is already on an addressable segment of one of
the buses.

6. The tangible computer readable storage medium of
claim 5, wherein the linked primitives describe ordering rules
for the switches to switch between the different segments so
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a controller can communicate with a target device connected
to one of the different segments.

7. The tangible computer readable storage medium of
claim 5, wherein the buses comprise a segmented topology of
the buses having serially linked bus segments with at least one
of the serial link bus segments extending from a first one of
the switches to a second one of the switches.

8. The tangible computer readable storage medium of
claim 5, wherein the linked primitives describe multiple dif-
ferent switching paths along the buses to a target device.

9. A bus system, comprising:

a controller;

a bus coupled to the controller and divided into multiple
segments each having a unique segment number for
addressing purposes;

plural switches on the bus connected in series by serially
linked bus segments, wherein primitives describe order-
ing rules to enact the plural switches to select different
ones of the serially linked bus segments to address
devices on the bus, wherein the plural switches com-
prise:

afirst switch having an input and a plurality of first outputs;
and

a second switch having an input and a plurality of second
outputs, the input of the second switch being directly
connected to a first one of the plurality of first outputs;
and

an addressable device connected to a second one of the
plurality of first outputs, wherein the first switch selec-
tively connects the input of the first switch to the input of
the second switch or the addressable device; and

a switching table that provides paths along the serially
linked bus segments to target devices.

10. The bus system of claim 9, wherein the primitives
associated with a specific serially linked bus segment on the
bus describe steps needed to switch to the specific serially
linked bus segment.

11. The bus system of claim 9, wherein the bus is an 12C
(Inter-Integrated Circuit) bus with more than 112 nodes that
communicate on the bus.

12. The bus system of claim 9, wherein the primitives
include data used by the controller to select segments to
transmit data to a target device on the bus.

13. The method of claim 1, wherein the bus topology is
further segmented such that one of the plurality of second
outputs is directly connected to an input of a third switch
having a plurality of third outputs.

14. The method of claim 1, wherein the bus topology is
further segmented such that one of the plurality of second
outputs is directly connected to an input of a processor.

15. The bus system of claim 9 further comprising a third
switch, wherein one of the plurality of second outputs is
directly connected to an input of the third switch having a
plurality of third outputs.

16. The bus system of claim 9 further comprising a proces-
sor, wherein one of the plurality of second outputs is directly
connected to an input of the processor.
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